
Effective Heuristics for the Bi-objective
Euclidean Bounded Diameter Minimum

Spanning Tree Problem

V. Prem Prakash1(&), C. Patvardhan1, and Anand Srivastav2

1 Dayalbagh Educational Institute (Deemed University), Agra 282005, India
vpremprakash@acm.org

2 Christian-Albrechts-Universitat zu Kiel, Kiel, Germany

Abstract. The Euclidean Bounded Diameter Minimum Spanning Tree
(BDMST) Problem aims to find the spanning tree with the lowest cost, or
weight, under the constraint that the diameter does not exceed a given integer D,
and where the weight of an edge is the Euclidean distance between its two end
points (vertices). Several well-known heuristic approaches have been applied to
this problem. The bi-objective version of this problem aims to minimize two
conflicting objectives, weight (or cost), and diameter. Several heuristics for the
BDMST problem have been recast for the bi-objective BDMST problem (or
BOMST problem) and their performance studied on the entire range of possible
diameter values. While some of the extant heuristics are seen to dominate other
heuristics over certain portions of the Pareto front of solutions, no single
heuristic performs well over the entire range. This paper presents a hybrid tree
construction heuristic that combines a greedy approach with a heuristic strategy
for constructing effective tree “backbones”. The performance of the proposed
heuristic is shown to be consistently superior to the other extant heuristics on a
standard benchmark suite of dense Euclidean graphs widely used in the
literature.
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1 Introduction

Given a connected, weighted, undirected graph G and an integer bound D, a
bounded-diameter spanning tree (BDST) is a spanning tree on G whose diameter, that
is, the maximum number of edges along any path in the tree, does not exceed D. The
Bounded Diameter Minimum Spanning Tree (BDMST) Problem aims to find a BDST
on G of minimum weight (the weight of a BDST is the sum of its edge weights).
The BDMST problem is known to be NP-hard [1] for 4 � D < n − 1. The Euclidean
version of the BDMST problem deals with graph instances whose edge weights are the
Euclidean distances between the connected vertices.

Applications from several domains map to this problem: routing problems in VLSI
often require minimum spanning trees that bound the sink-source delays (diameter
bound) and total wire length (minimum cost/weight); large bitmap data structures are
often clustered and compressed as MSTs – fast retrieval such structures of such
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structures requires the MST to have a low diameter [2]; the work by Raymond [3]
presents an application of the BDMST problem for minimizing communication costs
while performing distributed mutual exclusion in large scale distributed systems and
ad-hoc networks.

The Bi-objective Bounded Diameter Minimum Spanning Tree (BOMST) Problem
[4] aims to find BDSTs such that both the diameter and weight of the tree are mini-
mized over the entire range of diameter values. Thus the single-objective BDMST
Problem is a special case of the more general BOMST Problem as defined here. The
Euclidean BOMST Problem (e-BOMST) restricts the domain to that of Euclidean
instances.

Achuthan and Caccetta give two exact algorithms for the BDMST Problem in [5,
6]. Multiple variants of multi-commodity flow (MCF) formulations for the BDMST
problem are given by Gouveia and Magnanti [7], which obtain very tight LP bounds.
However, these algorithms are only able to solve very small problem instances. This
has motivated the search for algorithms that are able to approximate low cost BDSTs
well for sufficiently large problem sizes within reasonable time. Several such heuristics
abound in the literature of the BDMST problem.

Abdalla and Deo [8] give a construction heuristic based on Prim’s algorithm [14]
called the One-time tree construction (OTTC) heuristic that runs in O(n4) time and
produces low cost BDSTs when the diameter constraint is small. They also give two
iterative refinement (IR) algorithms that iteratively decrease the lengths of long paths in
an unconstrained MST until the diameter constraint is satisfied. A more effective
Prim’s-based approach is presented in the Center-based tree construction (CBTC)
heuristic given by Julstrom [9], which constructs the BDST as a height-restricted tree
rooted either at a central vertex, if the diameter limit is even, or a central edge, if it is
odd. This heuristic, which takes O(n3) time, outperforms OTTC both in terms of
solution quality and running time. The Randomized tree construction heuristic
(RTC) [9] builds the BDST by selecting vertices in a random order and appending each
vertex to the tree at the lowest cost possible. This heuristic also requires O(n3) com-
putation time. The Center-based Least Sum-of-Costs (CBLSoC) heuristic given by
Patvardhan and Prakash [10] builds a low cost BDST in O(n3) time by repeatedly
appending the non-tree vertex with the lowest mean cost to all the remaining non-tree
vertices in the graph. Parallel versions of the CBTC, RTC and CBLSoC heuristics are
given in [16] and their performance studied on several benchmark problems. A recur-
sive, clustering-based heuristic called Center-based Recursive Clustering heuristic
(CBRC) is given for the problem by Nghia and Binh [11].

Kumar and Saha [4, 12] adapt several extant BDMST heuristics for the bi-objective
MST formulation of the problem and compare their performance on standard problem
instances. The results obtained are further improved using a bi-objective meta-heuristic
algorithm seeded with different heuristic solutions.

This paper presents a comprehensive comparison of some well known extant
heuristics with a hybrid heuristic that is adapted to the Euclidean version of the
BOMST problem. The performance of all the heuristics is obtained on much larger
problem instances than in earlier work on the BOMST problem, and the proposed
heuristic is shown to give superior performance on a benchmark suite comprised of
several dense Euclidean graph instances used widely in the literature.
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The rest of the paper is organized as follows. Section 2 describes two extant
heuristics that were shown to obtain superior Pareto fronts on Euclidean graphs in an
earlier work [4], and another well known heuristic for the BDMST problem which is
recast for the bi-objective version of the problem. Section 3 presents a hybrid heuristic
that computes low cost BDSTs across the diameter range in O(n3) time. The perfor-
mance of the heuristics on the benchmark suite is presented and discussed in Sect. 4,
and concluding remarks made in Sect. 5.

2 Three Extant Heuristics

Several heuristics have been developed in the literature for the BDMST problem, some
of which were recast for the BOMST problem in [4, 12]. Of these, the Center-based
Tree Construction (CBTC) and Randomized Tree Construction (RTC) were found to
generally obtain superior results on Euclidean instances over different ranges of the
Pareto front [12]. Therefore both of these are taken as baselines for comparing the
performance of the heuristics presented in this work with. The CBLSoC heuristic has
also been shown to perform well on Euclidean instances [15], and has been adapted
here for the eBOMST Problem. Following is a brief description of each of these
heuristics.

2.1 Center-Based Tree Construction (CBTC)

In a tree with diameter D, no vertex is more than D/2 hops or edges from the root vertex
of the tree [13]. The Center-Based Tree Construction (CBTC) heuristic [9] uses this
idea to build a BDST starting with an arbitrary graph vertex as the center of the tree,
and repeatedly appending to the BDST, the graph vertex with the lowest cost edge to
the partial tree. The heuristic dynamically maintains the depth information of each tree
node and ensures that the depth of any leaf node of the tree is at most D/2. The center of
the tree comprises of a single vertex if D is even, and one edge if D is odd. The
algorithm repeatedly appends to the growing BDST, the edge with the
lowest-cost/weight that adds a new vertex to the tree, while not violating the diameter
bound. In order to obtain a low cost BDST, this process is repeated n times, taking a
different graph vertex as the root node in each iteration.

Lemma 1. The running time of Center-based Tree Construction heuristic is O(n3).

Proof. The heuristic builds a BDST from its center, keeping track of the depth of each
incoming vertex and ensuring that node depth is strictly less than D/2. By using an O(n)
space data structure to dynamically keep track of the tree node of depth �D/2 closest to
each graph vertex, the computational cost of appending each incoming node to the
growing BDST becomes a linear time operation. Appending n − 1 vertices (or n − 2
vertices to the BDST if D is odd) results in O(n2) time for building one BDST. As the
heuristic repeats this process for each vertex, the total computation time required is O(n3).
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2.2 Randomized Tree Construction (RTC)

The Randomized Tree Construction (RTC) heuristic sets a randomly chosen vertex (or
edge, depending on whether D is even or odd, respectively) as the root of the BDST.
All subsequent vertices are chosen at random and appended to the tree via the lowest
cost edge that does not violate the diameter bound D. As with the CBTC, this process is
repeated n times, and the lowest cost BDST is returned.

Lemma 2. The running time of Randomized Tree Construction heuristic is O(n3).

Proof. If a partially constructed BDST has k nodes (represented by the set T), then
there are n − k graph vertices (represented as the set U) that are not part of the BDST.
Choosing a vertex u at random from U and appending it greedily to the vertex v ε T
such that cost (u, v) is minimal would require O(n) time. Appending n − 1 vertices in
this manner to complete the BDST would therefore require O(n2) time. Repeating this
process n times and returning the best BDST would thus need a total of O(n3) time.

2.3 Center-Based Least Sum-of-Costs (CBLSoC) Heuristic

The CBLSoC heuristic tries to construct the BDST in a relatively “less greedy” manner
by repeatedly appending to the partial tree, the graph vertex with the lowest average
cost to all other graph vertices, via the edge with smallest cost that does not violate the
diameter bound. This process is repeated starting from each graph vertex, and the
lowest cost BDST obtained is returned by the algorithm.

Lemma 3. The running time of the CBLSoC heuristic is O(n3).

Proof. For each vertex u, the sum of costs (and hence the mean cost) to all other n − 1
vertices in the graph G can be computed in O(n) time. Hence the time to compute the
sum-of-costs for all vertices in the graph would take O(n2) time. The BDST is initially
empty, i.e., T ¼ u. Starting with a center based approach, identifying the graph vertex
u with lowest mean cost to all other vertices in G would require O(n) time. Appending
u to vertex v ε T such that cost (u, v) is minimal would also take O(n) time. As
explained in the proofs of Lemmas 1 and 2, appending n − 1 vertices in this manner to
complete the BDST would require O(n2) time; repeating this process n times and
returning the best BDST would therefore result in a total of O(n3) time.

3 Hybrid Tree Construction (Hyb-TC) Heuristic

The CBTC heuristic loses out to other heuristics (notably the RTC heuristic) for small
values of D, but its performance improves quickly as the diameter bound is relaxed (cf.
Table 1). This is because the greediness inherent in the CBTC heuristic constrains it to
always choose the vertex that can be appended to the tree at the lowest cost possible. In
Euclidean BDSTs, this often results in backbones comprised of a small number of
low-depth vertices that are very close to each other, forcing the remaining vertices to be
appended to these vertices via higher cost edges and thereby returning BDSTs with
high total cost, or weight. As the diameter bound is gradually increased, the BDST
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returned by CBTC tends to shape up like an unconstrained MST, resulting in lower cost
BDSTs. Another fast heuristic strategy that proves very effective on small D in
Euclidean instances is the greedy Quadrant-centers based Heuristic (gQCH) [15],
which empirically breaks up the Euclidean space of graph vertices into different
numbers of equal sized sub-spaces, or quadrants, and tries to build a backbone of tree
vertices that can in turn form the roots for low cost sub-trees obtained by greedily
appending the remaining graph vertices to the BDST. In each quadrant, the vertex with
the lowest average cost to all other vertices (in that quadrant) is set as a backbone node.
When the number of quadrants is 1, this heuristic “collapses” into a single run of the
CBTC heuristic with the root node(s) set as the vertex (if the diameter limit is even) or
pair of vertices (if the diameter limit is odd) with the lowest mean cost to all other graph
vertices.

The proposed Hybrid Tree Construction (Hyb-TC) heuristic combines these two
strategies in order to obtain better results over the entire range of diameter bounds. The
heuristic starts in the same manner as the CBTC does, and builds n BDSTs starting
once each from each vertex/vertex pair. Thereafter, it tries to quickly build effective
BDST backbones using a subset of the vertex set to which the remaining vertices may
be appended greedily at a lower cost on average, thereby leading to lower tree costs.
With this objective, the heuristic chooses the graph vertex/vertices with the lowest
mean cost(s) to all other graph nodes as the central, or root vertex/vertices (depending
respectively on whether D is even or odd), and segregates the remaining graph vertices
into the “quadrants” of a uniform K � K matrix in the two dimensional Euclidean
plane, for 2 � K � ffiffiffi

n
p

. Within each quadrant, the vertex with the lowest mean cost
to all other vertices within the same quadrant is set as a tree backbone node of depth 1.
Once the backbone has been constructed in this manner, the remaining vertices are
appended to the tree greedily, as in CBTC. Another

ffiffiffi

n
p � 1 BDSTs are constructed in

this manner, and the algorithm returns the lowest cost tree from amongst the
n þ ffiffiffi

n
p � 1 BDSTs thus constructed.

Lemma 4. The running time of the Hyb-TC heuristic is O(n3).

Proof. In order to build the backbone, the heuristic computes the mean cost of each
vertex to every other vertex within its designated quadrant. Computing the mean cost of
each vertex v over K2 quadrants comprising a total of n vertices would require at most O
(n2) time. Over

ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

iterations, this would require a total of O n2
ffiffiffi

n
pð Þ time. In each

iteration, the remaining vertices are then appended greedily to the partial BDST – if the
backbone consists of m vertices, then n – m graph vertices need to be appended to the
tree – this operation would take another O(n2) time. Thus the total computation time to
compute the

ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

BDSTs would be O n2
ffiffiffi

n
pð Þ time. The remaining n BDSTs are

generated using a greedy approach starting from each vertex. As shown in the proof for
Lemma 1, constructing each BDST would require an additional O(n2) time, and
repeating this process for n vertices would take O(n3) time. Thus the total computation
time of the heuristic is the sum of these two components: O(n3) time for finding the
lowest cost BDST starting once from each vertex, and O n2

ffiffiffi

n
pð Þ for computing

ffiffiffi

n
p � 1

BDSTs using the backbone construction heuristic, thus resulting in a total computation
time of O(n3).
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4 Experiments

The benchmark graphs used in this work were taken from the Euclidean Steiner
Problem data sets given in Beasley’s OR-Library [17]. These data sets contain fifteen
instances each of completely connected graphs with 50, 100, 250, 500 and 1000
vertices, working out to a total of seventy five graphs. The x- and y- co-ordinates of
random points in the unit square form the vertices of the graph, and the Euclidean
distance between these vertices their edge weights. These instances have been used in
the literature for benchmarking heuristics and algorithms for the BOMST Problem.

The heuristics presented in this paper were tested on the first five instances of 50,
100, 250 and 500 vertex dense graphs of the Euclidean Steiner data sets, a total of
twenty problem instances, and the BDST costs returned by the heuristics were obtained
for diameter D, 2 � D � Dmax, where the upper limit for the D values, Dmax was
chosen as the diameter of an unconstrained MST on each graph instance. Pareto fronts
were obtained for the heuristics in this paper on each test instance, and plots of the
Pareto fronts obtained for the first instance of each size (50, 100, 250 and 500) of
benchmark graph are shown in Figs. 1, 2, 3 and 4 respectively. All the heuristics were
implemented in C on a Dell Precision T5500 workstation with 12 Xeon (2.4-GHz)
processor cores and 11 GB of RAM running RHEL 6. The BDST costs obtained by

Fig. 1. Pareto fronts obtained over the entire diameter range for the first 50 vertex dense
Euclidean graph for the CBTC, RTC, CBLSoC and Hyb-TC heuristics, up to D = 28.
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each heuristic for five selected diameter limits on the first instance of each of the 50,
100, 250 and 500 vertex benchmark graphs are given in Table 1.

The Pareto fronts for the various heuristics show that on small-to-medium range of
diameter bound, the CBLSoC heuristic significantly outperforms the CBTC, but is in
turn dominated by the RTC heuristic. However, as D is further increased, the random
choices made by the RTC lead it astray, often resulting in stagnation of improvements
in the cost of BDST returned (such results are indicated in Table 1 by a blank entry).
The Hyb-TC heuristic invariably obtains superior results, dominating all the other
heuristics in this range of the diameter bound, on all instances. This is clearly seen from
the better Pareto fronts obtained by the Hyb-TC heuristic on up to 500 vertex dense
graphs (Figs. 1, 2, 3 and 4 respectively). On medium range diameter bounds, CBLSoC
returns superior BDSTs vis-à-vis the other heuristics on 50 and 100 vertex graphs
(Figs. 1 and 2 respectively), and remains competitive on larger instances. However,
CBLSoC fails to obtain further improvements in the best trees returned when the
diameter bound is large. With the exception of a few cases on 50 and 100 vertex graphs
where the CBTC heuristic obtains better trees, the Hyb-TC heuristic outperforms all the
other heuristics over the medium range of diameter bound. As the diameter bound
becomes large, the low cost BDST returned by the Hyb-TC heuristic tends towards an

Table 1. BDST costs obtained for selected values of diameter bound on dense graphs of 50,
100, 250 and 500 vertices

n D BDST cost/weight
CBTC RTC CBLSoC Hyb-TC

50 5 13.04 8.53 10.94 8.63
10 8.44 6.84 6.66 6.59
15 6.64 6.63 5.68 6.14
20 5.35 – 5.56 5.35
25 5.08 – – 5.08

100 5 27.12 15.13 23.16 12.97
15 11.41 8.80 8.39 8.33
25 7.07 – 7.03 7.07
35 6.79 – – 6.79
45 6.61 – – 6.61

250 5 75.68 32.34 60.58 25.63
20 26.74 15.11 17.70 13.55
35 14.35 – 12.17 11.71
50 11.29 – – 11.29
65 10.65 – – 10.65

500 5 153.44 65.42 128.40 42.22
35 39.89 21.50 24.00 17.29
70 16.46 – 15.98 15.92
105 15.10 – – 15.10
140 14.86 – – 14.86
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Fig. 2. Pareto fronts obtained over the entire diameter range for the first 100 vertex Euclidean
benchmark instance for the CBTC, RTC, CBLSoC and Hyb-TC heuristics, up to D = 45.

Fig. 3. Pareto fronts obtained over the entire diameter range for the first 250 vertex Euclidean
benchmark graph for the CBTC, RTC, CBLSoC and Hyb-TC heuristics, up to D = 65.
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unconstrained MST, thereby leading to good, low cost BDSTs as in the CBTC
heuristic. Thus it is seen that in general, the Hyb-TC dominates all of the other
heuristics across the entire Pareto front of solutions.

5 Conclusions

A comprehensive comparison of several well known extant heuristics for the eBOMST
problem with a proposed hybrid heuristic is made in this work. While some of the
existing heuristics obtain good results for low diameter bounds and others perform
better as the diameter is relaxed, none of the extant heuristics obtains low cost BDSTs
across the entire range of diameter values. The proposed Hyb-TC heuristic combines
the strengths of some of the extant heuristics and obtains consistently superior BDSTs
across the entire range of possible diameter values. The performance of the heuristics is
studied on a wide range of dense graphs of up to 500 vertices, and the hybrid heuristic
is shown to outperform all the other extant heuristics.
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